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Microbial ethanol is gaining worldwide 
acceptance to overcome problems associated 
with the depletion of fossil  fuels and 
environmental pollution. The non-renewable 
energy sources have been depleting and it takes a 
few hundred million years for natural processes 
to recreate them. Therefore, the primary benefit 
of switching fuel source to microbial ethanol 
is that the biomass is renewable, and can 
potentially provide a sustainable supply over a 
long term. In addition, many estimate that the 
production and use of bioethanol could cause 
a reduction in net greenhouse gas emissions 
(Mabee & Saddler 2010).

Ethanol production is usually done by 
chemical synthesis of hydrocarbons. In recent 
years, there is a global emphasis in ethanol 

production by fermentation process. Increased 
yield of ethanol production by microbial  
fermentation depends on the use of ideal 
microbial strain, appropriate fermentation  
substrate and suitable process technology. 
An ideal micro-organism used for ethanol 
production must have rapid fermentative 
potential, improved flocculating ability, 
appreciable osmotolerance, enhanced ethanol 
tolerance and good thermotolerance (Brooks 
2008; Stewart et al. 1982; Yan & Tanaka 2006). 
To date, there is no microbial strain which meet 
these qualities (Brooks 2008).

Brooks (2008) reported various strains of 
indigenous yeasts capable of producing ethanol 
had been isolated from different local sources 
such as molasses (Yan & Tanaka 2006), sugar 
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mill effluents, local fermented foods, and 
fermented pineapple juice and lignocellulotic 
agroindustrial residues (Okur & Saracçoĝlu 
2006). In most of these studies, the preferred 
candidate for industrial production of ethanol 
has been Saccharomyces cerevisiae due to its 
ability to produce high concentration of ethanol 
and the ethanol is not contaminated by other 
products from the substrate (Yan & Tanaka 
2006).

Thus the aims of this study were to isolate 
indigenous yeast strains from the fermented 
kitchen waste and to evaluate their potential in 
ethanol production. 

Materials and Methods 
Fermentation mixture was prepared by mixing 
kitchen waste (vegetables and fruits) and brown 
sugar and water at a weight ratio of 3:1:10. 
Fermentation was carried out in a closed 
container at room temperature (26°C–28°C) 
under non-sterile condition. The seven-day-
old product was subjected to 10-fold serial 
dilution then it was spread onto potato dextrose 
agar (PDA) containing 0.1% chloramphenicol. 
The PDA plates were incubated at 30°C for  
24 h – 48 h. The yeast isolates were characterized 
by their ability to ferment sugars in broth 
containing 1% yeast extract and 2% sugars 
(glucose, lactose, galactose, fructose, xylose, 
maltose or sucrose).

Ethanol fermentation was carried out in 
conical flask at 26°C–28°C for 72 h in yeast 
extract peptone dextrose broth (1% yeast 
extract, 2% peptone, 18% glucose) under sterile 
condition. Ethanol production and glucose 
utilization were monitored using Fourier 
transform infrared attenuated total reflection 
(FTIR-ATR) spectroscopy. The levels of ethanol 
and glucose in the samples were estimated 
based on the selected absorption wavenumber 
and absorbance value corresponding to those 
of the chemical standards. The isolates were 

identified through molecular approach based on 
the internal transcribed spacer (ITS) sequence. 
The DNA of the yeasts was extracted by boiling 
in 2% SDS followed by ethanol precipitation. 
The ITS region was amplified using universal 
primers ITS1 and ITS4 (White et al. 1990). 
Nucleotide sequences of the PCR products 
were analyzed by automated DNA sequencing 
by First Base Laboratories.  

Results and Discussion 
Fifteen yeasts were isolated from fermented 
kitchen waste. They were grouped into six 
groups based on their sugar fermentation 
profiles (Table 1). Group 6 was the only group 
which did not ferment glucose and any other 
tested sugars. The Y7, Y9, Y10 and Y14 were 
therefore regarded as yeast-like microorganisms 
based on their colony morphologies and they 
were excluded from the fermentation test where 
glucose was used as carbon source.  Primary 
fermentation analysis on the yeast isolates from 
the other 5 groups detected different levels of 
ethanol. Yeasts from groups 1, 2 and 3 produced 
sustaintial amount of ethanol as shown by the 
FTIR spectrums. However, there was only 
<10% (v/v) of ethanol observed in the culture 
media of yeast isolates in Groups 4 and 5 (data 
not shown). 

Subsequent time course studies of ethanol 
production were performed on isolates Y4, 
Y6 and Y8, respectively representing group 
1, 2 and 3. It was observed that ethanol 
production peaked after 36 h of fermentation. 
Y4 recorded the highest ethanol production 
as high as 16% followed by 12% and 11% in 
Y6 and Y8, respectively (Figure 1). Elevated 
level of ethanol in Y4 could be explained by 
efficient glucose utilization to below 1% after 
36 h fermentation (Figure 1). In contrast, 
glucose levels in Y6 and Y8 were 7% and 5%, 
respectively at 36 h and gradually decreased to 
3% at 72 h. Ethanol has been reported to show 
inhibitory effects on yeast fermentation through 
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Table 1. Sugar fermentation test of the yeasts.

Yeasts
Sugars

Grouping
Glu Mal Lac Gal Xyl Suc Fru

Y1 + – – + – + + 4
Y2 + – – + – + + 4
Y3 + – – + – + + 4
Y4 + + – + – + + 1
Y5 + – – – – – – 5
Y6 + + – – – + + 2
Y7 – – – – – – – 6
Y8 + – – – – – + 3
Y9 – – – – – – – 6

Y10 – – – – – – – 6
Y11 + – – – – – – 5
Y12 + – – + – + + 4
Y13 + – – – – – + 3
Y14 – – – – – – – 6
Y15 + – – – – – – 5

Note:	 + : Positive fermentation; – : Negative fermentation; Glu: Glucose; Mal: Maltose; Lac: Lactose; Gal: Galactose; 
Xyl: Xylose; Suc: Sucrose; and Fru: Fructose.
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Figure 1. Time course study of ethanol fermentation in yeasts.
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the alteration of membrane permeability and 
disruption of its function (Dombek & Ingram 
1987). These lead to an increase in hydrogen ion 
influx which causes the decline in transport rates 
and eventually, there was no further glucose 
uptake for ethanol production. 

FTIR spectroscopy offers rapid and 
convenient means in estimating the amounts 
of ethanol and glucose in fermentation mixture. 
There was no requirement for pre-analysis 
sample preparation and separation. The 
absorptions around 3000 cm–1 (likely a C-H 
stretch) (Coates 2000) and 1000 cm–1 (likely 
a C-O region) (Petibois et al. 1999) were used 
to quantitate the levels of ethanol and glucose 

respectively (Figure 2). These 2 wavenumbers 
were found to exhibit positive linear relationship 
towards different concentrations of ethanol 
(0%–35%) and glucose (0%–18%) standard at 
respective R2 values of 0.915 and 0.997. 

Isolates Y4, Y6 and Y8 generated PCR 
products at different sizes at 620 b.p., 500 
b.p. and 520 b.p., respectively (Figure 3). 
ITS has been regarded as highly variable 
region for fungi identification. However, in 
this study, attempts to identify the yeasts 
isolates based on the ITS sequences were 
not conclusive due to low similarity (<90%) 
between the sample sequences and the fungal 
DNA database. Isolates Y4, Y6 and Y8 were 
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Figure 2. FTIR spectrum of yeast fermentation mixture:
arrows indicate the absorption peaks used for quantitating  
ethanol (3000 cm–1) and glucose (1000 cm–1).
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found closest to Saccharomyces cerevisiae 
(76%), Paracoccidioides brasiliensis (56%) and 
Saccharomyces boulardii (64%) respectively 
based on the ITS sequences.

Conclusion
A number of three yeasts with promising 
ethanol production were isolated and partially 
identified from fermented kitchen waste. A 
rapid and simple FTIR based method has been 
developed to detect the ethanol and glucose 
levels during the fermentation process. The 
highest ethanol production was achieved in the 
yeast isolate Y4 which is believed to be closely 
related to  Saccharomyces cerevisiae. Further 
analysis need to be carried out to verify the 
yeast species and its ethanol yield in a scale up 
of the fermentation process.
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